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Abstract: For the nearest neighbor search problem in high-dimensional spaces, Locality-Sensitive Hashing 
(LSH)has shown excellent performance in terms of query cost and disk space utilization. Under the traditional 
analysis model, LSH is considered a randomized algorithm, with the only uncertainty being the choice of the 
hash function. In this research, the collision probability obtained under this model is referred to as the 
hash-function-based collision probability. In this paper, a different analysis model is used to conduct a 
theoretical analysis of LSH. The motivation for this work is twofold:1) Under the existing analysis model, users 
must generate random data structures for each query point to achieve the theoretical effect, which is impractical 
in real applications.2) The performance metric that users are concerned with is the expected collision 
probability of a random query point in a single data structure. Based on this, this paper derives the collision 
probability of random point pairs under the Hamming distance for any single hash function. The collision 
probability derived under this model is referred to as the query-based collision probability. It is also proven that 
in the Hamming space, the two types of collision probabilities are identical. 
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1.  Introduction 
As an efficient and high-quality nearest neighbor search method in high-dimensional spaces, 

Locality-Sensitive Hashing (LSH)has been widely applied in many fields, including web clustering, 
computer vision, and bioinformatics [1-2]. The core idea of LSH is to design hash functions in different 
metric spaces so that the collision probability of point pairs with closer distances is greater than that of point 
pairs with farther distances. To date, various families of hash functions have been developed for multiple 
similarity metrics, such as Hamming distance and distance(s∈[0,2])､ Jaccard similarity and Arccos 
similarity, among others. 

2.  Collision probability of LSH algorithms and practical application challenges 
It has been found that LSH-based algorithms generally have stable error probabilities and excellent 

practical performance[3-6].However, all LSH algorithms rely on the following fact: given a point pair with 
a distance of r ,the collision probability of this point pair under a randomly selected hash function(denoted as 
P r H(r)will decrease as r decreases P r H(r)This probability is referred to as the hash-function-based collision 
probability. It has also been found that for approximate nearest neighbor search of a point q, the LSH 
algorithm can guarantee a success rate of at least P. However, according to existing literature [4,7-9], P r 
H(r), The only source of uncertainty in the derivation is the choice of the hash function. Thus, it can be 
precisely stated that: given a query point q, the probability of finding the approximate nearest neighbor of q 
(by randomly selecting a sufficiently large number of LSH data structures, denoted as n will asymptotically 
approach P a n tends to infinity. In other words, to achieve the optimal theoretical performance, users would 
have to generate a large number of independent random LSH data structures for all query points, which is 
clearly not practically feasible. 

In practical applications, LSH-based algorithms typically operate as follows. First, a set of hash 
functions is independently and randomly generated. Then, using this set of hash functions, data points are 
mapped to corresponding hash buckets to form the data structure. For each query point, the data structure is 
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accessed and returns the approximate nearest neighbor. However, in most cases, what users are concerned 
with is the expected collision probability of a random query point in a single data structure [3,5-6,10], which 
means there is a certain difference from the traditional interpretation mentioned above. In database 
applications, once the hash functions are randomly generated, the data structure is determined, while the 
distribution of data points is constantly changing for this fixed data structure [11]. 

From the above research, it is evident that there is an urgent need to conduct an alternative probabilistic 
analysis of LSH data structures. Under this analysis model, once the hash functions are randomly selected, 
LSH can be regarded as a deterministic data structure. In this paper, for the Hamming space, the collision 
probability of random point pairs on a single hash function (denoted as P rh(r)), The research also 
demonstrates that this result is consistent with the one obtained under the traditional model. P r H(r)identical. 

3.  Analysis model 
As mentioned in the introduction, in P r H(r) During the derivation process, LSH is regarded as a 

randomized algorithm. However, in practical applications, once the LSH functions are randomly selected in 
the preprocessing stage, they are fully determined. This indicates that there is a need to change the 
perspective in studying the probabilistic analysis of LSH data structures [12]. 

In this paper, the focus is on the derivation of the collision probability of random point pairs on a single 
hash function (P rh(r)), The reason for this is P rh(r) is that this is the fundamental starting point for the 
performance analysis of LSH-type algorithms. In fact, once P rh(r)the data structure is determined and the 
hash functions are randomly selected, the subsequent analysis methods will be based on P r H(r)the analysis 
methods based on [the traditional model] are already completely the same. It is obvious that, P rh(r) it 
depends on the distribution of the data points. To make the analysis feasible and credible, the research 
assumes that the data points are randomly distributed. For a specific data distribution, P rh(r) and P r H(r) the 
discussion on the relationship can be found in the literature [6], and will not be elaborated here. 

3.1.  Preparations 
To address ther-nearest neighbor search problemIndyk and MotwaniIn the literature [4], the concept of 

Locality-Sensitive Hashing (LSH)functions was introduced. The underlying mechanism of LSH functions 
is to select specific hash functions such that the collision probability of points that are close in distance is 
greater than that of points that are farther apart under these hash functions, thereby identifying the neighbors 
of a query point. Subsequently, this study uses H to denote the family of hash functions that map from Rd to 
some space U. For any two points o and q, when a hash function h is randomly selected from H, if the 
collision (h(q)=h(o)) probability satisfies the following conditions, then H can be referred to as a 
Locality-Sensitive Hashing (LSH)function family. 

Definition: For any two points o, q∈ Rd, If the following two conditions are both satisfied, the function 
family H can be called (r, c r, P1, P2)-sensitive: 

If ‖𝑞 − 𝑜‖ ≤ 𝑟,then 𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑜)] ≥ 𝑃1; 

If ‖𝑞 − 𝑜‖ ≥ 𝑟,then 𝑃𝑟𝐻[ℎ(𝑞) = ℎ(𝑜)] ≤ 𝑃1; 

In order for the hash function family to be practically meaningful in design, it must satisfy P₁>P₂｡In 
practical applications, researchers have designed different families of hash functions based on various 
metric spaces. This paper mainly focuses on the Hamming space. 

3.2.  Hamming space 
In the Hamming space, data points are represented using Hamming codes, that is, binary encodings. The 

encodings have the same length, with each bit being either 0 or 1. The distance between data points is 
measured by the Hamming distance, which is defined as the number of positions at which the corresponding 
bits are different between two encodings. Subsequently, the notation {0,1} n can be used to represent the 
Hamming code, where n denotes the length of the encoding. For the Hamming space, Indyk and Motwania 
corresponding LSH function family has been constructed, namely hi(o)=o[I]｡Here I ∈[1,2,…,n] I is a 
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randomly selected index, and o is the encoding of the data point. It can be seen that once I is determined, the 
hash function hi is also determined, that is, the value at the corresponding position of the encoding. From the 
definition of the function family, it is not difficult to deduce that for any two points o and q ,the collision 
probability (is denoted as 𝑃𝑟𝐻𝑏) is equal to the proportion of the number of positions where the values are the 
same between the two points out of the total length,a value that is ultimately determined by the Hamming 
distance between the two points.Assuming that the Hamming distance between o and q is r ,the research 
yields: 

PrH
b(r) = 1 − r

n⁄  

4.  Analysis and derivation 
Without loss of generality, assume that the\(k\)-t h bit of the encoding is selected as the hash function. 

Now, for two points in the Hamming space, o1 and o2, Let event A denote o1 and o2collision, That is to say o1 

and o2thek-th bit is the same. Let event Bdenote o1 and o2the distance between them is r .Obviously 
𝑃𝑟ℎ

𝑏(𝑟) = 𝑃𝑟(𝐴|𝐵).Also, according to the previous conclusion 𝑃𝑟ℎ𝑏(𝑟) = 1 − r n⁄ ,The following theorem 
will prove 𝑃𝑟ℎ𝑏(𝑟) and 𝑃𝑟𝐻𝑏(𝑟)the equivalence between them. 

Theorem  Pr(A|B) = 1 − r n⁄  
Proof According to Bayes' theorem, we can obtain: 

P(A|B) =
P(B|A)P(A)

P(B)
 

In an n-dimensional Hamming space, the number of distinct point pairs is2𝑛 × (2𝑛 − 1).Assuming that 
the k -t h bit is the same for all point pairs, then the number of distinct point pairs is 2 × 2n−1 × (2n−1 −
1).Therefore, we can further obtain: 

P(A) = 2 ×
2n−1

2n
×
2n−1 − 1

2n − 1
=
2n−1 − 1

2n − 1
 

o1 and o2 the distance between them is r, which means o1 and o2there are r bits that are different between 
them, from which we can obtain P(B). The formula for P(B) is expressed as: 

P(B) =
Cn
r × 2r × 2n−1 2⁄

C2n
2  

Assumingo1 and o2 collide, then the probability that the k -t h bit is the same between them is: 

P(B|A) =
Cn−1
r × 2r × 2n−1 2⁄

C2n−1
2  

Substituting equations (2), (3), and (4) yields: 

P(A|B) =
n − r

r
×

2n × (2n − 1)

2n−1 × (2n−1 − 1) × 2
×
2n−1 − 1

2n − 1
= 1 − r n⁄  

The theorem is proved. 

5.  Conclusion 
In this paper, we have provided a probabilistic analysis based on fixed LSH functions. Specifically, for 

the commonly used Hamming space, we have derived the collision probability of random data point pairs 
with a distance of r under a single hash function. (P rh (r)). During the derivation process, it was also proven 
that P rh(r) and the collision probability obtained under the traditional model are completely identical. P r H(r) 
they are completely identical. 
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