Vol. 2025 No. 4 (2025)
Articles

Research progress on Nano-Tungsten oxide gas sensors

Zhiran Zhang
Chongqing Technology and Business University, No.28 Xue fu Avenue, Nan' an District, Chongqing,400067, China.
Jiaxi Wang
Chongqing Technology and Business University, No.28 Xue fu Avenue, Nan' an District, Chongqing,400067, China.
Min Liu
Chongqing Research Center for Humanities and Social Sciences, No.2 Tian Sheng Road, Beibei District, Chongqing,400715, China.

Published 18-09-2025

Keywords

  • Nanomaterials,
  • Tungsten Oxide,
  • Gas Sensors

How to Cite

[1]
Z. Zhang, J. Wang, and M. Liu, “Research progress on Nano-Tungsten oxide gas sensors”, Camb. Sci. Adv., vol. 2025, no. 4, pp. 7–13, Sep. 2025, doi: 10.62852/csa/2025/173.

Abstract

In the field of research on the detection of various harmful gases, nano-semiconductor metal oxide gas sensors hold a very important position. As an n-type semiconductor metal oxide, tungsten oxide has become a research focus and hotspot in gas-sensitive materials in recent years due to its unique structural and performance characteristics. This paper briefly introduces the gas-sensing response mechanism of tungsten oxide-based gas-sensitive materials, summarizes the main processes and directions for improving the gas-sensing performance of nano-tungsten oxide materials in recent years, and finally points out its own shortcomings and future research and development directions.

References

  1. Liao F, Chen C, Subramanian V. Organic TFTs as Gas Sensors for Electronic Nose Applications [J]. Sensors & Actuators B Chemical,2005,107(2):849-855.
  2. [Jee S H, Kakati N, Kim S H, et al. Work Function Effects of Nano Structured Zn O Thin Film on the Acetone Gas Sensitivity[J]. MRS Proceedings,2009, (6): 1174.
  3. Wu Q H, Li J, Sun S G. Nano SnO2 Gas Sensors[J]. Current Nanoscience,2010,6(5):525-538.
  4. Bhowmik Fecht H J Bhattacharyya P. Vertical Mode Gas Sensing Performance of TiO2 Nanotube Array by Tuning of Surface Area and Carrier Transport Length[J]. I EEE Sensors Journal,2015,15(10):5919- 5926.
  5. Zhu Qin, Zhang Yumin. Research progress on modification of tungsten oxide semiconductor gas sensors[J]. Journal of Functional Materials, 2014, (17): 1001-9731.
  6. Tian F H, Zhao L, Xue X Y, et al. DFT Study of CO Sensing Mechanism on Hexagonal WO3, (0 0 1) Surface: The Role of Oxygen Vacancy[J]. Applied Surface Science,2014,311(9):362-368.
  7. Bai S, Zhang K, Sun J, et al. Polythiophene-WO3, Hybrid Architectures for Low-temperature H2S Detection[J]. Sensors & Actuators B Chemical,2014,197(1):142-148.
  8. M. Takács, Cs. Dücső, Z. Lábadi, et al. Effect of Hexagonal WO3, Morphology on NH3, Sensing[J]. Procedia Engineering,2014, (87):1011-1014.
  9. Shim Y S, Zhang L, Kim D H, et al. Highly Sensitive and Selective H2, and NO2, Gas Sensors based on Surface- decorated WO3, Nanoigloos[J]. Sensors & Actuators B Chemical,2014,198(4):294-301.
  10. Ding D, She n Y, Ou yang Y, et al. Hydrothermal Deposition and Photochromic Performances of Three Kinds of Hierarchical Structure Arrays of WO3, Thin Films[J]. Thin Solid Films,2012,520(24):7164-7168.
  11. Ning Wen sheng, Du Pi yi, Weng Wenjian, et al. Research progress of gas-sensing materials[J]. Materials Review, 2002, 16(8): 45-47.
  12. Xuan Tian mei, Yin Guilin, Ge Meiying, et al. Research progress of nano-Zn O gas sensors[J]. Materials Review, 2015, 29(1): 132-136.
  13. [13] Wang Shi liang, He Yue hui, Tang Yiwu, et al. Preparation and application of one-dimensional tungsten oxide nanomaterials[J]. Materials Review, 2004, 18(f10): 98-101.
  14. Lu N, Gao X, Yang C, et al. Enhanced Formic Acid Gas-sensing Property of WO3, Nanorod Bundles via Hydrothermal Method[J]. Sensors & Actuators B Chemical,2016, (223):743-749.
  15. Zeng, Qi, Zhao, et al. Studies on Fabrication of Urchin-like WO3 Center Dot H2O Hollow Spheres; and Their Photocatalytic Properties[J]. Crystal Research & Technology,2013,48(5):334-343.
  16. Wang C, Feng C, Wang M, et al. One-pot Synthesis of Hierarchical WO3 Hollow Nanospheres and Their Gas Sensing Properties[J]. Rsc Advances,2015,5(38):29698-29703.
  17. Huang Z, Song J, Pan L, et al. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy[J]. Advanced Materials,2015,27(36):5309 –5327.
  18. Tian Ming Li, Wen Zeng, et al. Urchin likehex-WO3 Microspheres Hydrothermal Synthesis and Gas-sensing Properties[J]. Materials Letters,2015(144):106-109.
  19. Liu B, Wang J, Wu J, et al. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance[J]. J. mater. chem.a,2014,2(6):1947- 1954.
  20. Tesfamichael T, Piloto C, Arita M, et al. Fabrication of Fe-doped WO3, Films for NO2, Sensing at Lower Operating Temperature[J]. Sensors & Actuators B Chemical,2015, (221):393-400.
  21. Renitta A, Vijayalakshmi K.A Novel Room Temperature Ethanol Sensor based on Catalytic Fe Activated Porous WO3 Microspheres[J]. Catalysis Communications,2016, (73):58-62.
  22. Tong P V, Hoa N D, Duy N V, et al. Enhancement of Gas-sensing Characteristics of Hydrothermally Synthesized WO3, Nanorods by Surface Decoration with Pd Nanoparticles[J]. Sensors & Actuators B Chemical, 2016, (223):453-460.
  23. Liu B, Cai D, Liu Y, et al. Improved Room-temperature Hydrogen Sensing Performance of Directly Formed Pd/ WO3, Nanocomposite[J]. Sensors & Actuators B Chemical, 2013,193(3):28-34.
  24. Esfandiar A, Irajizad A, Akhavan O, et al. Pd –WO3/ reduced Graphene Oxide Hierarchical Nanostructures as Efficient Hydrogen Gas Sensors[J]. International Journal of Hydrogen Energy,2014,39(15):8169-8179.
  25. Yamaguchi Y, Imamura S, Ito S, et al. Influence of Oxygen Gas Concentration on Hydrogen Sensing of Pt/ WO3, Thin Film Prepared by Sol-gel Process[J]. Sensors& Actuators B Chemical,2015, (216):394-401.
  26. Chen D, Yin L, Ge L, et al. Low-temperature and Highly Selective NO-sensing Performance of WO3, Nanoplates Decorated with Silver Nanoparticles[J]. Sensors & Actuators B Chemical, 2013, 185 (8): 445-455.
  27. Xu Y, Tang Z, Zhang Z. Preparation and Carbon Monoxide Sensing Properties of Tungsten Trioxide Nanowires[J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2009, 37(3):387-391.
  28. Bai S, Zhang K, Sun J, et al. Polythiophene-WO3, Hybrid Architectures for Low-temperature H2S Detection[J]. Sensors & Actuators B Chemical,2014,197(1):142- 148.
  29. Gui Y, Zhao J, Wang W, et al. Synthesis of Hemispherical WO3/Graph ene Nano composite by a Microwave-assisted Hydrothermal Method and the Gas- sensing Properties to Triethylamine[J]. Materials Letters,2015, (155):4-7.
  30. Chu X, Hu T, Gao F, et al. Gas Sensing Properties of Graphene-WO3, Composites Prepared by Hydrothermal Method[J]. Materials Science & Engineering B,2015, (193):97-104.
  31. Shin K, Almashat L, Ahn D S, et al. A Room Temperature Conductometric Hydrogen Sensor with Polyaniline/WO3 Nanocomposite[J]. Sensor Letters,2011,9(1):77-81.
  32. Koo W T, Choi S J, Kim N H, et al. Catalyst-decorated hollow WO3, Nanotubes Using Layer-by-layer Self- assembly on Polymeric Nanofiber Templates and Their Application in Exhaled Breath Sensor[J]. Sensors & Actuators B Chemical,2015, (223):301-310.