Published 18-09-2025
Keywords
- Nanomaterials,
- Tungsten Oxide,
- Gas Sensors
Copyright (c) 2025 Cambridge Science Advance

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Abstract
In the field of research on the detection of various harmful gases, nano-semiconductor metal oxide gas sensors hold a very important position. As an n-type semiconductor metal oxide, tungsten oxide has become a research focus and hotspot in gas-sensitive materials in recent years due to its unique structural and performance characteristics. This paper briefly introduces the gas-sensing response mechanism of tungsten oxide-based gas-sensitive materials, summarizes the main processes and directions for improving the gas-sensing performance of nano-tungsten oxide materials in recent years, and finally points out its own shortcomings and future research and development directions.
References
- Liao F, Chen C, Subramanian V. Organic TFTs as Gas Sensors for Electronic Nose Applications [J]. Sensors & Actuators B Chemical,2005,107(2):849-855.
- [Jee S H, Kakati N, Kim S H, et al. Work Function Effects of Nano Structured Zn O Thin Film on the Acetone Gas Sensitivity[J]. MRS Proceedings,2009, (6): 1174.
- Wu Q H, Li J, Sun S G. Nano SnO2 Gas Sensors[J]. Current Nanoscience,2010,6(5):525-538.
- Bhowmik Fecht H J Bhattacharyya P. Vertical Mode Gas Sensing Performance of TiO2 Nanotube Array by Tuning of Surface Area and Carrier Transport Length[J]. I EEE Sensors Journal,2015,15(10):5919- 5926.
- Zhu Qin, Zhang Yumin. Research progress on modification of tungsten oxide semiconductor gas sensors[J]. Journal of Functional Materials, 2014, (17): 1001-9731.
- Tian F H, Zhao L, Xue X Y, et al. DFT Study of CO Sensing Mechanism on Hexagonal WO3, (0 0 1) Surface: The Role of Oxygen Vacancy[J]. Applied Surface Science,2014,311(9):362-368.
- Bai S, Zhang K, Sun J, et al. Polythiophene-WO3, Hybrid Architectures for Low-temperature H2S Detection[J]. Sensors & Actuators B Chemical,2014,197(1):142-148.
- M. Takács, Cs. Dücső, Z. Lábadi, et al. Effect of Hexagonal WO3, Morphology on NH3, Sensing[J]. Procedia Engineering,2014, (87):1011-1014.
- Shim Y S, Zhang L, Kim D H, et al. Highly Sensitive and Selective H2, and NO2, Gas Sensors based on Surface- decorated WO3, Nanoigloos[J]. Sensors & Actuators B Chemical,2014,198(4):294-301.
- Ding D, She n Y, Ou yang Y, et al. Hydrothermal Deposition and Photochromic Performances of Three Kinds of Hierarchical Structure Arrays of WO3, Thin Films[J]. Thin Solid Films,2012,520(24):7164-7168.
- Ning Wen sheng, Du Pi yi, Weng Wenjian, et al. Research progress of gas-sensing materials[J]. Materials Review, 2002, 16(8): 45-47.
- Xuan Tian mei, Yin Guilin, Ge Meiying, et al. Research progress of nano-Zn O gas sensors[J]. Materials Review, 2015, 29(1): 132-136.
- [13] Wang Shi liang, He Yue hui, Tang Yiwu, et al. Preparation and application of one-dimensional tungsten oxide nanomaterials[J]. Materials Review, 2004, 18(f10): 98-101.
- Lu N, Gao X, Yang C, et al. Enhanced Formic Acid Gas-sensing Property of WO3, Nanorod Bundles via Hydrothermal Method[J]. Sensors & Actuators B Chemical,2016, (223):743-749.
- Zeng, Qi, Zhao, et al. Studies on Fabrication of Urchin-like WO3 Center Dot H2O Hollow Spheres; and Their Photocatalytic Properties[J]. Crystal Research & Technology,2013,48(5):334-343.
- Wang C, Feng C, Wang M, et al. One-pot Synthesis of Hierarchical WO3 Hollow Nanospheres and Their Gas Sensing Properties[J]. Rsc Advances,2015,5(38):29698-29703.
- Huang Z, Song J, Pan L, et al. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy[J]. Advanced Materials,2015,27(36):5309 –5327.
- Tian Ming Li, Wen Zeng, et al. Urchin likehex-WO3 Microspheres Hydrothermal Synthesis and Gas-sensing Properties[J]. Materials Letters,2015(144):106-109.
- Liu B, Wang J, Wu J, et al. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance[J]. J. mater. chem.a,2014,2(6):1947- 1954.
- Tesfamichael T, Piloto C, Arita M, et al. Fabrication of Fe-doped WO3, Films for NO2, Sensing at Lower Operating Temperature[J]. Sensors & Actuators B Chemical,2015, (221):393-400.
- Renitta A, Vijayalakshmi K.A Novel Room Temperature Ethanol Sensor based on Catalytic Fe Activated Porous WO3 Microspheres[J]. Catalysis Communications,2016, (73):58-62.
- Tong P V, Hoa N D, Duy N V, et al. Enhancement of Gas-sensing Characteristics of Hydrothermally Synthesized WO3, Nanorods by Surface Decoration with Pd Nanoparticles[J]. Sensors & Actuators B Chemical, 2016, (223):453-460.
- Liu B, Cai D, Liu Y, et al. Improved Room-temperature Hydrogen Sensing Performance of Directly Formed Pd/ WO3, Nanocomposite[J]. Sensors & Actuators B Chemical, 2013,193(3):28-34.
- Esfandiar A, Irajizad A, Akhavan O, et al. Pd –WO3/ reduced Graphene Oxide Hierarchical Nanostructures as Efficient Hydrogen Gas Sensors[J]. International Journal of Hydrogen Energy,2014,39(15):8169-8179.
- Yamaguchi Y, Imamura S, Ito S, et al. Influence of Oxygen Gas Concentration on Hydrogen Sensing of Pt/ WO3, Thin Film Prepared by Sol-gel Process[J]. Sensors& Actuators B Chemical,2015, (216):394-401.
- Chen D, Yin L, Ge L, et al. Low-temperature and Highly Selective NO-sensing Performance of WO3, Nanoplates Decorated with Silver Nanoparticles[J]. Sensors & Actuators B Chemical, 2013, 185 (8): 445-455.
- Xu Y, Tang Z, Zhang Z. Preparation and Carbon Monoxide Sensing Properties of Tungsten Trioxide Nanowires[J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2009, 37(3):387-391.
- Bai S, Zhang K, Sun J, et al. Polythiophene-WO3, Hybrid Architectures for Low-temperature H2S Detection[J]. Sensors & Actuators B Chemical,2014,197(1):142- 148.
- Gui Y, Zhao J, Wang W, et al. Synthesis of Hemispherical WO3/Graph ene Nano composite by a Microwave-assisted Hydrothermal Method and the Gas- sensing Properties to Triethylamine[J]. Materials Letters,2015, (155):4-7.
- Chu X, Hu T, Gao F, et al. Gas Sensing Properties of Graphene-WO3, Composites Prepared by Hydrothermal Method[J]. Materials Science & Engineering B,2015, (193):97-104.
- Shin K, Almashat L, Ahn D S, et al. A Room Temperature Conductometric Hydrogen Sensor with Polyaniline/WO3 Nanocomposite[J]. Sensor Letters,2011,9(1):77-81.
- Koo W T, Choi S J, Kim N H, et al. Catalyst-decorated hollow WO3, Nanotubes Using Layer-by-layer Self- assembly on Polymeric Nanofiber Templates and Their Application in Exhaled Breath Sensor[J]. Sensors & Actuators B Chemical,2015, (223):301-310.